2007 Vol. 9, No. 17 3383-3386

## Chuktabularins A–D, Four New Limonoids with Unprecedented Carbon Skeletons from the Stem Bark of Chukrasia tabularis

Chuan-Rui Zhang, Sheng-Ping Yang, Shang-Gao Liao, Cheng-Qi Fan, Yan Wu, and Jian-Min Yue\*

State Key Laboratory of Drug Research, Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 555 Zuchongzhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, People's Republic of China

jmyue@mail.shcnc.ac.cn

Received June 19, 2007

## **ABSTRACT**

Chuktabularins A–D (1–4), four novel 16-norphragmalin-type limonoids that feature unprecedented skeletons with a biosynthetically extended C2 or C3 unit at C-15 forming a unique 2,7-dioxabicyclo[2.2.1]heptane moiety, were isolated from the stem bark of *Chukrasia tabularis*. Their structures were elucidated by spectroscopic analysis and computer modeling. The biosynthetic pathway of 1–4 was postulated.

Limonoids are a class of structurally diversified nortriterpenoids with a wide range of bioactivities, such as insect antifeeding, antimalarial, and anticancer activities.<sup>1</sup> The attractive structures and biological significance have prompted continuous studies on these metabolites.<sup>2</sup>

Chukrasia tabularis A. Juss. (Maliaceae), a timber tree, mainly grows in the tropical areas of Asia, such as India, Malaysia, and southern China.<sup>3</sup> Its bark has been applied traditionally in China and India as astringent, antidiarrheal,

(1) (a) Champagne, D. E.; Koul, O.; Isman, M. B.; Scudder, G. G. E.; Towers, G. H. N. *Phytochemistry* **1992**, *31*, 377–394. (b) Roy, A.; Saraf, S. *Biol. Pharm. Bull.* **2006**, *29*, 191–201.

and anti-influenza agents.<sup>4</sup> The extract of its leaves also showed activities against bacteria and fungi.<sup>5</sup> Previous chemical investigations on this plant afforded a series of phragmalin limonoids.<sup>6</sup> In our recent study, four limonoids were isolated from its seeds.<sup>7</sup> A subsequent study on its stem bark collected from Xishuangbanna of China has led to the isolation of four novel 16-norphragmalin-type limonoids, chuktabularins A–D (1–4) featuring unprecedented skeletons with a biosynthetically extended C2 or C3 unit at C-15

<sup>(2) (</sup>a) Wang, X. N.; Yin, S.; Fan, C. Q.; Wang, F. D.; Lin, L. P.; Ding, J.; Yue, J. M. *Org. Lett.* **2006**, *8*, 3845–3848. (b) Yin, S.; Fan, C. Q.; Wang, X. N.; Lin, L. P.; Ding, J.; Yue, J. M. *Org. Lett.* **2006**, *8*, 4935–4938. (c) Hay, A.-E.; Ioset, J.-R.; Ahua, K. M.; Diallo, D.; Brun, R.; Hostettmann, K. *J. Nat. Prod.* **2007**, *70*, 9–13.

<sup>(3)</sup> Chen, S. K.; Chen, B. Y.; Li, H. In *Flora Republicae Popularis Sinicae*; Zhi, Z. Z., Ed.; Science Press: Beijing, China, 1997; Vol. 43 (3), pp 47–49.

<sup>(4)</sup> Editorial Committee of the Administration Bureau of Traditional Chinese Medicine. In *Chinese Materia Medica*; Bencao, Z., Ed.; Shanghai Science and Technology Press: Shanghai, China, 1999; Vol. 5, pp 31–32.

<sup>(5)</sup> Nagalakshmi, M. A. H.; Thangadurai, D.; Muralidara Rao, D.; Pullaiah, T. *Fitoterapia* **2001**, *72*, 62–64.

<sup>(6) (</sup>a) Nakatani, M.; Abdelgaleil, S. A. M.; Saad, M. M. G.; Huang, R. C.; Doe, M.; Iwagawa, T. *Phytochemistry* **2004**, *65*, 2833–2841. (b) Connolly, J. D.; Labbé, C.; Rycroft, D. S. *J. Chem. Soc.*, *Perkin Trans. I* **1978**, 285–288. (c) Ragettli, T.; Tamm, C. *Helv. Chim. Acta* **1978**, *61*, 1814–1831.

<sup>(7)</sup> Fan, C. Q.; Wang, X. N.; Yin, S.; Zhang, C. R.; Wang, F. D.; Yue, J. M. *Tetrahedron* **2007**, *63*, 6741–6747.

Table 1. <sup>1</sup>H and <sup>13</sup>C NMR Data of 1-4 (in CDCl<sub>3</sub>)

|            | 1                                        |                 | 2                                  |                 | 3                                        |                 | 4                                  |                 |
|------------|------------------------------------------|-----------------|------------------------------------|-----------------|------------------------------------------|-----------------|------------------------------------|-----------------|
| no.        | $\delta_{\mathrm{H}}$ (multi, $J$ in Hz) | $\delta_{ m C}$ | $\delta_{ m H}$ (multi, $J$ in Hz) | $\delta_{ m C}$ | $\delta_{\mathrm{H}}$ (multi, $J$ in Hz) | $\delta_{ m C}$ | $\delta_{ m H}$ (multi, $J$ in Hz) | $\delta_{ m C}$ |
| 1          |                                          | 84.4            |                                    | 85.5            |                                          | 84.5            |                                    | 85.6            |
| 2          |                                          | 82.1            |                                    | 81.0            |                                          | 82.3            |                                    | 81.3            |
| 3          | 5.22 (s)                                 | 83.4            | 5.34 (s)                           | 82.8            | 5.22 (s)                                 | 83.5            | 5.35 (s)                           | 83.0            |
| 4          |                                          | 45.4            |                                    | 45.6            |                                          | 45.4            |                                    | 45.6            |
| 5          | 2.57 (br d, 12.1)                        | 41.1            | $2.07 \ (m)^a$                     | 40.4            | 2.58 (br d, 11.9)                        | 41.2            | $2.08 \ (m)^a$                     | 40.5            |
| 6a         | 2.43 (br d, 16.5)                        | 34.1            | $2.30 (m, 2H)^a$                   | 31.3            | 2.45 (br d, 16.5)                        | 34.1            | $2.31 (m, 2H)^a$                   | 31.3            |
| 6b         | 2.22 (dd, 16.5, 12.1)                    |                 |                                    |                 | 2.23 (dd, 16.5, 11.9)                    |                 |                                    |                 |
| 7          |                                          | 173.1           |                                    | 172.7           |                                          | 173.2           |                                    | 172.6           |
| 8          |                                          | 90.1            |                                    | 89.6            |                                          | 90.0            |                                    | 89.6            |
| 9          |                                          | 76.1            |                                    | 75.1            |                                          | 76.2            |                                    | 75.3            |
| 10         |                                          | 52.5            |                                    | 52.3            |                                          | 52.6            |                                    | 52.4            |
| 11         | 5.66 (d, 3.3)                            | 72.4            | 5.63 (d, 3.6)                      | 71.3            | 5.68 (d, 3.2)                            | 72.4            | 5.64 (d, 3.4)                      | 71.4            |
| 12         | 5.62 (d, 3.3)                            | 73.2            | 5.45 (d, 3.6)                      | 72.0            | 5.64 (d, 3.2)                            | 73.2            | 5.46 (d, 3.4)                      | 72.2            |
| 13         |                                          | 41.6            |                                    | 41.5            |                                          | 41.6            |                                    | 41.5            |
| 14         | 3.08 (dd, 11.7, 7.6)                     | 44.8            | 3.27 (dd, 12.0, 7.5)               | 44.2            | 3.06 (dd, 11.8, 7.8)                     | 44.4            | 3.25 (dd, 11.8, 7.6)               | 43.9            |
| $15\beta$  | 2.53 (dd, 11.7, 7.6)                     | 34.1            | 2.55 (dd, 11.7, 7.5)               | 35.3            | 2.55 (dd, 11.8, 7.8)                     | 34.0            | 2.56 (dd, 11.8, 7.6)               | 33.9            |
| $15\alpha$ | 1.87 (dd, 11.7, 11.7)                    |                 | 1.94 (dd, 11.7, 11.7)              |                 | 1.86 (dd, 11.8, 11.8)                    |                 | 1.90 (dd, 11.8, 11.8)              |                 |
| 17         | 6.14 (s)                                 | 71.2            | 6.07 (s)                           | 71.2            | 6.16 (s)                                 | 71.3            | 6.08 (s)                           | 71.3            |
| 18         | 0.90 (s, 3H)                             | 19.0            | 0.89 (s, 3H)                       | 19.0            | 0.91 (s, 3H)                             | 19.0            | 0.90 (s, 3H)                       | 19.1            |
| 19a        | 1.18 (s, 3H)                             | 17.6            | 5.01 (d, 12.5)                     | 69.3            | 1.19 (s, 3H)                             | 17.7            | 5.03 (d, 12.4)                     | 69.4            |
| 19b        |                                          |                 | 4.18 (d, 12.5)                     |                 |                                          |                 | 4.18 (d, 12.4)                     |                 |
| 20         |                                          | 122.3           |                                    | 122.3           |                                          | 122.3           |                                    | 122.4           |
| 21         | 7.64 (br s)                              | 140.5           | 7.48 (br s)                        | 140.1           | 7.65  (br  s)                            | 140.5           | 7.48 (br s)                        | 140.2           |
| 22         | 6.49 (br d, 1.1)                         | 109.6           | 6.39 (br d, 1.0)                   | 109.5           | 6.50 (dd, 1.7, 0,7)                      | 109.6           | 6.40 (br d, 0.8)                   | 109.5           |
| 23         | 7.36 (br t, 1.7)                         | 143.0           | 7.37 (br t, 1.6)                   | 143.2           | 7.37  (br  t,  0.7)                      | 143.1           | 7.38 (br t, 1.7)                   | 143.2           |
| 28         | 0.76 (s, 3H)                             | 16.0            | 0.89 (s, 3H)                       | 15.0            | 0.77 (s, 3H)                             | 16.0            | 0.90 (s, 3H)                       | 15.0            |
| 29a        | 1.83 (d, 11.2)                           | 40.0            | $2.08 (d, 11.8)^a$                 | 38.8            | 1.84 (d, 11.3)                           | 40.0            | $2.06 \ (m)^a$                     | 38.8            |
| 29b        | 1.79 (d, 11.2)                           |                 | 2.01 (d, 11.8)                     |                 | 1.80 (d, 11.3)                           |                 | $2.03 \ (m)^a$                     |                 |
| 30         | 4.63 (s)                                 | 71.0            | 4.62 (s)                           | 71.0            | 4.65 (s)                                 | 70.7            | 4.63 (s)                           | 70.8            |
| 31         |                                          | 110.2           |                                    | 110.9           |                                          | 112.6           |                                    | 113.3           |
| 32         | 1.62 (s, 3H)                             | 18.7            | 1.64 (s, 3H)                       | 18.7            | 1.96 (q, 7.6, 2H)                        | 26.0            | 1.98 (q, 7.5, 2H)                  | 25.9            |
| 33         |                                          |                 |                                    |                 | 1.06 (t, 7.6, 3H)                        | 7.9             | 1.07 (t, 7.5, 3H)                  | 7.8             |
| 7-OMe      | 3.61 (s, 3H)                             | 51.6            |                                    |                 | 3.62 (s, 3H)                             | 51.7            |                                    |                 |
| 1-OH       | 4.63 (s)                                 |                 | 4.86 (s)                           |                 | 4.64 (s)                                 |                 | 4.89 (s)                           |                 |
| 9-OH       | 3.27 (s)                                 |                 | 3.34 (s)                           |                 | 3.25 (s)                                 |                 | 3.34 (s)                           |                 |
| 2-OAc      | 2.06 (s, 3H)                             | 20.9            | 2.08 (s, 3H)                       | 20.8            | 2.08 (s, 3H)                             | 21.0            | 2.09 (s, 3H)                       | 20.7            |
|            |                                          | 169.6           |                                    | 169.6           |                                          | 169.6           |                                    | 169.4           |
| 3-OAc      | 2.47 (s, 3H)                             | 21.0            | 2.48 (s, 3H)                       | 20.9            | 2.48 (s, 3H)                             | 21.1            | 2.48 (s, 3H)                       | 20.9            |
|            |                                          | 169.5           |                                    | 169.1           |                                          | 169.5           |                                    | 169.1           |
| 11-OAc     | 1.93 (s, 3H)                             | 20.9            | 2.11 (s, 3H)                       | 20.9            | 1.93 (s, 3H)                             | 20.9            | 2.12 (s, 3H)                       | 20.8            |
| 10.01      | 0.05 ( .017)                             | 169.5           | 0.04 ( 0.77)                       | 170.9           | 0.00 ( 017)                              | 169.5           | 0.05 ( .077)                       | 170.9           |
| 12-OAc     | 2.07 (s, 3H)                             | 20.5            | 2.04 (s, 3H)                       | 20.6            | 2.08 (s, 3H)                             | 20.6            | 2.05 (s, 3H)                       | 20.5            |
|            | 2.22 ( 277)                              | 169.2           | 2.22 ( 277)                        | 170.0           | 0.00 ( OTT)                              | 169.2           | 0.10 ( 077)                        | 169.9           |
| 17-OAc     | 2.09 (s, 3H)                             | 20.4            | 2.08 (s, 3H)                       | 20.4            | 2.09 (s, 3H)                             | 20.4            | 2.10 (s, 3H)                       | 20.4            |
|            |                                          | 168.7           |                                    | 168.8           |                                          | 168.7           |                                    | 168.7           |

<sup>&</sup>lt;sup>a</sup> Proton signals were overlapped. Recorded at 400 MHz (<sup>1</sup>H) and 100 MHz (<sup>13</sup>C).

forming a unique 2,7-dioxabicyclo[2.2.1]heptane system. We report herein the isolation and structural elucidation of these compounds (1-4).

The air-dried stem bark (5 kg) of *C. tabularis* was extracted with 95% ethanol at room temperature to give a crude extract (378 g), which was then partitioned between EtOAc and water to obtain the EtOAc-soluble fraction (120 g). It was fractionated via a MCI gel column eluted with MeOH—H<sub>2</sub>O (2:8 to 9:1) in gradient to obtain five fractions. Fraction 3 (67 g) was extensively chromatographed over columns of silica gel and C-18 reversed-phase silica gel, and finally purified by semipreparative HPLC to give chukta-

bularins A (1, 8 mg), B (2, 15 mg), C (3, 12 mg), and D (4, 10 mg) (for details see Supporting Information).

3384 Org. Lett., Vol. 9, No. 17, 2007

Chuktabularin A (1)<sup>8</sup> was obtained as a white amorphous powder. The molecular formula C<sub>38</sub>H<sub>48</sub>O<sub>17</sub> with 15 degrees of unsaturation was determined by the HREIMS ion at m/z776.2884 [M]<sup>+</sup> (calcd 776.2892). The IR absorption bands showed the presence of hydroxyl (3442 cm<sup>-1</sup>) and ester groups (1751 cm<sup>-1</sup>). In accordance with the molecular formula, 38 carbon signals were observed in the <sup>13</sup>C NMR spectrum (Table 1), and were further classified by DEPT experiments into the categories of 10 methyls, 3 methylenes, 10 methines (5 oxygenated and 3 olefinic ones), and 15 quaternary carbons (6 ester carbonyls and 1 olefinic one). In addition, four tertiary methyls ( $\delta_H$  1.62, 1.18, 0.90, and 0.76), one methoxyl ( $\delta_H$  3.61;  $\delta_C$  51.6), five acetyls, a ketal group  $(\delta_C 110.2)$ , and a  $\beta$ -furyl ring were distinguished by analysis of the NMR data (Table 1). Two proton resonances at  $\delta_{\rm H}$  4.63 and 3.27, which had no correlation with any carbon signals in the HSQC spectrum, were only attributable to the protons of two hydroxyls.

Comprehensive analysis of the <sup>1</sup>H and <sup>13</sup>C NMR data (Table 1) and 2D NMR spectra of **1**, especially HMBC (Figure 1), allowed the establishment of A1, A2, B, C, and

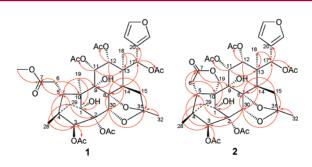
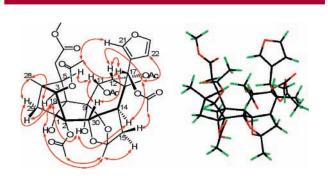




Figure 1. Key HMBC (H→C) correlations of 1 and 2

E rings and the C-6–C-7 unit, which are the typical features of a phragmalin-type limonoid. However, the 1D and 2D NMR spectra of 1 revealed that the characteristic D ring comprising a six-membered lactone and the common orthoacetate of a limonoid were absent. A ketal resonance at  $\delta_{\rm C}$  110.2 was present, which was attached to C-15 and was assigned to the C-31 of the biosynthetically extended C2 unit (C31 and C32) on the basis of HMBC correlations of H<sub>2</sub>-15 and Me-32 to C-31. The above analysis suggested that 1 was

a 16-norphragmalin-type limonoid featuring an unprecedented skeleton with a biosynthetically extended C2 unit at C-15.

In the HMBC spectrum (Figure 1), two hydroxyls resonating at  $\delta$  4.63 and 3.27 were assigned to C-1 and C-9 by the HMBC correlations from 1-OH to C-1 and 9-OH to C-9, respectively; four acetoxyls were placed at C-3, C-11, C-12, and C-17 on the basis of HMBC correlations from the H-3, H-11, H-12, and H-17 to each corresponding carbonyl of the acetyls, respectively. The remaining one acetoxyl was subsequently assigned to C-2 on the basis of its downfield shifted carbon resonance at  $\delta$  82.1 (for the case of 2-OH, the C-2 carbon resonance normally appeared at ca.  $\delta$ C 78.0), 6.10 and this was confirmed by the ROESY correlation of Me-32/2-OAc (Figure 2). The last two oxygenated carbons



**Figure 2.** ROESY (↔) correlations and the 3D computer modeling of 1.

at  $\delta$  90.1 and  $\delta$  71.0 were respectively assigned to C-8 and C-30 as judged by the mutual HMBC correlations of H-14, H<sub>2</sub>-15 and H-30/C-8, H-14/C-30, and H-30/C-3 and C-14. Both C-8 and C-30 were linked with C-31 via oxygen atoms to form the ketal group on the basis of their chemical shifts and key HMBC correlation between H-30 and C-31. The only methoxyl was attached to C-7 by the HMBC correlation between OMe and C-7. The planar structure of **1** was thus assigned as a 16-norphragmalin-type limonoid featuring an unprecedented skeleton with a biosynthetically extended C2 unit at C-15 forming a unique 2,7-dioxabicyclo[2.2.1]heptane moiety (red part).

The relative stereochemistry of **1** was fixed by a ROESY experiment (Figure 2), in which the correlations of H-5/H-11, H-11/H-30, H-12/H-17, 3-OAc/H-17, 3-OAc/H-21, and H-17/H-30 indicated that 3-OAc, H-5, H-11, H-12, H-17, and H-30 were cofacial, and were arbitrarily assigned as the  $\beta$ -configuration. In consequence, the ROESY cross-peaks of Me-18/H-22, Me-18/H-14, H-14/9-OH, 9-OH/Me-19, Me-19/1-OH, 1-OH/Me-32, and Me-32/2-OAc revealed that H-14, Me-18, Me-19, Me-32, 1-OH, 9-OH, and 2-OAc were  $\alpha$ -oriented. Thereby, two ether bonds forming the five-membered ketal system were  $\alpha$ -directed. Subsequently, the CH<sub>2</sub>-29 group was assigned to the  $\alpha$ -position on the basis of ROESY correlations of Me-19/H-29a and H-3/H-29b. Steric bulk reduced free rotation around the C-13/C-17 bond, and allowed the observation of ROESY correlations of H-17/

Org. Lett., Vol. 9, No. 17, 2007

<sup>(8)</sup> **Chuktabularin A** (1): White amorphous powder  $[\alpha]^{20}_D + 20$  (c 0.135, CHCl<sub>3</sub>); IR (KBr)  $\nu_{\rm max}$  3442, 2983, 1751, 1632, 1371, 1225, 1045, 875, 602 cm<sup>-1</sup>; for  $^1{\rm H}$  and  $^{13}{\rm C}$  NMR data, see Table 1; ESIMS m/z 799 [M + Na]+; EIMS m/z 776 (4) [M]+, 758 (5), 716 (27), 656 (42), 554 (48), 536 (54), 494 (72), 440 (54), 398 (55), 221 (65), 179 (100), 149 (44), 95 (62), 81 (33); HREIMS m/z 776.2884 [M]+ (calcd for  $C_{38}H_{48}O_{17}$  776.2892).

<sup>(9) (</sup>a) Brogan, J. B.; Zercher, C. K.; Bauer, C. B.; Rogers, R. D. J. Org. Chem. 1997, 62, 3902–3909. (b) He, J.; Feng, X. Z.; Zhao, B. J. Nat. Prod. 2003, 66, 1249–1251. (c) Manfrotto, C.; Mella, M.; Freccero, M.; Fegnoni, M.; Albini, A. J. Org. Chem. 1999, 64, 5024–5028.
(10) (a) Saad, M. M. G.; Iwagawa, T.; Doe, M.; Nakatani, M.

<sup>(10) (</sup>a) Saad, M. M. G.; Iwagawa, T.; Doe, M.; Nakatani, M. *Tetrahedron* **2003**, *59*, 8027–8033. (b) Wu, J.; Xiao, Q.; Huang, J. S.; Xiao, Z. H.; Qi, S. H.; Li, Q. X.; Zhang, S. *Org. Lett.* **2004**, *6*, 1841–1844. (c) Wu, J.; Zhang, S.; Xiao, Q.; Li, Q. X.; Huang, J. S.; Long, L. J.; Huang, L. M. *Tetrahedron Lett.* **2004**, *45*, 591–593.

H-30, H-17/H-12, H-22/Me-18, 3-OAc/H-21, and H-15 $\beta$ / 17-OAc, which demonstrated the stereochemistry at C-17 as depicted.

A computer modeled 3D structure (Figure 2) of 1 was generated by using MM2 force field calculations for energy minimization with the molecular modeling program Chem3D Ultra 9.0. The relative stereochemistry and the conformation of 1 assigned by ROESY spectrum were compatible with those of 1 offered by computer modeling, in which the close contacts of atoms calculated in space were consistent with the ROESY correlations (Figure 2, Supporting Information).

Chuktabularin B (2)<sup>11</sup> showed the HREIMS ion at m/z 760.2541 [M]<sup>+</sup> corresponding to the molecular formula of  $C_{37}H_{44}O_{17}$  (calcd 760.2578) requiring 16 double bond equivalents. The <sup>1</sup>H and <sup>13</sup>C NMR data (Table 1) of **2** showed high similarity to those of **1**, except for the presence of an oxygenated C-19 methylene ( $\delta_{\rm H}$  5.01 and 4.18,  $\delta_{\rm C}$  69.3) in **2** instead of the Me-19 of **1**, and the absence of the methoxyl at C-7, suggesting that a six-membered 7,19-lactone was likely formed in **2**. This was confirmed by the key HMBC correlation (Figure 1) between H<sub>2</sub>-19 and C-7. The ROESY correlations of H-19a/1 $\alpha$ -OH and H-19b/H-29a revealed that the six-membered 7,19-lactone ring was  $\alpha$ -directed. The comprehensive interpretation of 2D NMR spectra (Supporting Information), in particular, HMBC and ROESY (Figures 1 and 3), verified the structure of **2**. A computer modeled

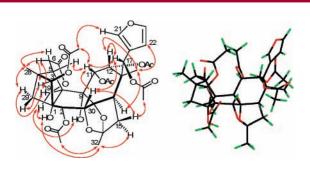



Figure 3. ROESY  $(\leftrightarrow)$  correlations and the 3D computer modeling of 2.

3D structure (Figure 3) was also supportive evidence for the structure of **2**.

Chuktabularins C (3)<sup>12</sup> and D (4)<sup>13</sup> with molecular formulas of  $C_{39}H_{50}O_{17}$  (at m/z 790.3037 [M]<sup>+</sup>) and  $C_{38}H_{46}O_{17}$  (at m/z 774.2762 [M]<sup>+</sup>) as determined by HREIMS showed

the presence of one more  $CH_2$  unit than those of **1** and **2**, respectively. Analyses of  $^1H$  and  $^{13}C$  NMR data (Table 1) of **3** and **4** indicated that they are the respective analogues of **1** and **2** by incorporating a biosynthetically extended C3 unit into C-15 instead of a C2 one. Thus, the structures of chuktabularins C (**3**) and D (**4**) were established, and verified by 2D NMR spectra (Supporting Information).

Scheme 1. The Plausible Biogenetic Origin of 1-4

The origin of **1–4** (Scheme 1) was proposed to be the phragmalin-type limonoid **i**. Insertion of a C2 or a C3 unit, e.g., via acetyl-CoA or propionyl-CoA, into the intermediate **i** by a Claisen reaction<sup>14</sup> would produce a key intermediate **ii**, which could undergo a hydrolysis and acetylation to yield **iii**. Ketal formation and decarboxylation would form chuktabularin A (**1**) or C (**3**). Compounds **1** or **3** could finally be transformed into **2** or **4** via oxidation and intramolecular esterification.

**Acknowledgment.** Financial support from the Key Project of National Natural Science Foundation (Grant No. 30630072) is gratefully acknowledged. We thank Prof. You-Kai Xu of Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences for the collection and identification of the plant material.

**Supporting Information Available:** Experimental procedures; key HMBC and NOESY (3)/ROESY (4) correlations of **3** and **4**; IR, EIMS, and 1D and 2D NMR spectra of chuktabularins A-D (1-4); and the close contacts of atoms in space for compounds 1-4 calculated by computer modeling. This material is available free of charge via the Internet at http://pubs.acs.org.

OL701437H

3386 Org. Lett., Vol. 9, No. 17, 2007

<sup>(11)</sup> **Chuktabularin B** (2): White amorphous powder  $[\alpha]^{20}_{\rm D}$  +16 (c 0.160, CHCl<sub>3</sub>); IR (KBr)  $\nu_{\rm max}$  3431, 2956, 1751, 1633, 1373, 1227, 1041, 924, 602 cm<sup>-1</sup>; for <sup>1</sup>H and <sup>13</sup>C NMR data, see Table 1; ESIMS m/z 783 [M + Na]<sup>+</sup>; EIMS m/z 760 (7) [M]<sup>+</sup>, 742 (10), 718 (26), 700 (24), 658 (36), 466 (38), 424 (61), 382 (100), 364 (28), 149 (30), 95 (32), 81 (18); HREIMS m/z 760.2541 [M]<sup>+</sup> (calcd for  $C_{37}H_{44}O_{17}$  760.2578).

<sup>(12)</sup> **Chuktabularin C** (3): White amorphous powder  $[\alpha]^{20}_{\rm D}$  +27 (c 0.110, CHCl<sub>3</sub>); IR (KBr)  $\nu_{\rm max}$  3442, 2956, 2921, 2850, 1755, 1630, 1461, 1373, 1242, 1034, 602 cm<sup>-1</sup>; for <sup>1</sup>H and <sup>13</sup>C NMR data, see Table 1; ESIMS m/z 813 [M + Na]<sup>+</sup>; EIMS m/z 790 (1) [M]<sup>+</sup>, 772 (5), 730 (22), 712 (8), 670 (27), 494 (40), 182 (46), 95 (42), 57 (100); HREIMS m/z 790.3037 [M]<sup>+</sup> (calcd for C<sub>39</sub>H<sub>50</sub>O<sub>17</sub> 790.3048).

<sup>(13)</sup> **Chuktabularin D** (4): White amorphous powder  $[\alpha]^{20}_D + 25$  (c 0.120, CHCl<sub>3</sub>); IR (KBr)  $\nu_{\text{max}}$  3431, 2958, 1751, 1373, 1225, 1040, 602 cm<sup>-1</sup>; for <sup>1</sup>H and <sup>13</sup>C NMR data, see Table 1; ESIMS m/z 797 [M + Na]<sup>+</sup>; EIMS m/z 774 (3) [M]<sup>+</sup>, 756 (5), 732 (13), 714 (16), 672 (27), 480 (37), 438 (53), 396 (70), 149 (77), 95 (41), 57 (100); HREIMS m/z 774.2762 [M]<sup>+</sup> (calcd for  $C_{38}H_{46}O_{17}$  774.2735).

<sup>(14)</sup> Dewick, P. M. *Medicinal Natural Products: A Biosynthetic Approach*, 2nd ed.; John Wiley & Sons Ltd.: Chichester, England, 2004; pp 15–17.